PHYSICS

1. If in the circuit, the power dissipation is 150 W , then R is equal to?

2. A 36Ω galvanometer is shunted by resistance of 4Ω. The percentage of the total current, which passed through the galvanometer is?
3. Two electric bulbs whose resistances are in the ratio of 1:2 are connected in series. The powers dissipated in them have the ratio
4. What is Potential gradient?

CHEMISTRY

1. Write chemical equations involved in the preparation of KMnO_{4} from MnO_{2}.
2. How will you convert pot. Permanganate to Manganese dioxide?
3. What happen when dil. NaOH solution is added to a solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in water ?
4. Complete the following equations:
(a) $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{SO}_{3}^{2-}+6 \mathrm{H}^{+} \rightarrow$
(b) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{Fe}^{2+}+14 \mathrm{H}^{+} \rightarrow$
5. Give relationship between the equivalent weight and molecular weight of KMnO_{4}
a) Acidic medium.
b) Neutral medium
c) Alkaline medium
6. What are lanthanides and actinides? Why are these called inner transition or f-block elements?
7. What is lanthanide contraction? What is its cause and what are its consequences?
8. The elements of 3 d transition series are given:
Sc Ti V Cr Mn Fe Co Ni Cu Zn . Answer the following
(i) Write the element which shows maximum number of oxidation states. Give reason.
(ii) Which element has the highest m.p?
(iii) Which element shows only +3 oxidation state?
(iv) Which element is a strong oxidizing agent in +3 oxidation state and why?
9. MnO_{2} is fused with KOH in the presence of KNO_{3} as an oxidizing agent, it gives a dark green compound (A) Compound (A) disproportionate in acidic solution to give a purple compound (B). An alkaline solution of compound (B) oxidises K1 to
(C) whereas an acidified solution of compound (B) oxidises Kl to (D). Identify (A), (B), (C) and (D).
10. How would you account for the following?
(i) Cr^{2+} is reducing in nature while with the same d-orbital configuration $\left(\mathrm{d}^{4}\right) \mathrm{Mn}^{3+}$ is an oxidising agent.

MATHS

$$
\frac{\sin [x]}{[x]+1}, \text { for } x>0
$$

1. If $f(x)\left\{\begin{array}{c}\frac{\cos \frac{\pi}{2}[x]}{[x]}, \text { for } x<0 \\ k, \text { for } x=0\end{array}\right.$; where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x , then in order that f be continuous at $\mathrm{x}=0$, the value of k is
2. If $f: R \rightarrow R$ is defined by
$F(x)=\left\{\begin{array}{ll}\frac{2 \sin x-\sin 2 x}{2 x \cos x}, & \text { if } x \neq 0 \\ a, & \text { if } x=0\end{array}\right.$, then the value of a so that f is continuous at $\mathrm{x}=0$ is
3. The value of $f(0)$ so that $f(x)=$ $\frac{\left(4^{x}-1\right)^{3}}{\sin \left(\frac{x}{4}\right) \log \left(1+\frac{x^{2}}{3}\right)}$ is continuous everywhere is
4. Let $f(x)=\frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{x}$, then the value which should be assigned to f at $\mathrm{x}=0$ so that it is continuous everywhere is.
5. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}} & , \text { If } x \neq 2 \\ k & \text {, If } x=2\end{array}\right.$. If $f(x)$ is continuous for all x, then $k=$
6. The points at which the function $f(x)=$ $\frac{x+1}{x^{2}+x-12}$ is discontinuous , are
7. If $f(x)=\left\{\begin{array}{l}\frac{\sin 5 x}{x^{2}+2 x}, x \neq 0 \\ k+\frac{1}{2}, x=0\end{array}\right.$ is continuous at x $=0$, then the value of k is
8. If $f(x)=\left\{\begin{array}{l}\frac{1-\sin ^{3} x}{3 \cos ^{2} x}, \quad x<\frac{\pi}{2} \\ a, \quad x=\frac{\pi}{2} \\ \frac{b(1-\sin x}{(\pi-2 x)^{2}}, x<\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, then the value of $\left(\frac{b}{a}\right)^{5 / 3}$ is
9. If $f(x)=\left\{\begin{array}{c}e^{x^{2}}+x, x>0 \\ a x+b, x \leq 0\end{array}\right.$ is
differentiable at $x=0$ then find the value of a and b
10. If the derivative of the function
$f(x)=$
$\left\{\begin{array}{c}b x^{2}+a x+4 ; x \geq-1 \\ a x^{2}+b \quad x<-1 \\ \text { continuous then }\end{array}\right.$
